Preparation and Crystal Structure of $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) X_{2}(X=\mathrm{Cl}, \mathrm{Br})$: The First Chromous Halide-Disilicates

Anita Schmidt, Robert Glaum, and Johannes Beck
Institut für Anorganische und Analytische Chemie der Justus-Liebig—Universität Gießen, Heinrich-Buff-Ring 58, D-35392 Gießen, Germany

Received June 26, 1996; in revised form September 20, 1996; accepted September 26, 1996

The new chromous oxo-halides $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) X_{2}(X=\mathrm{Cl}, \mathrm{Br})$ which adopt a hitherto unknown structure type were obtained as small, deep blue crystals from mixtures of $\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{Cr}, \mathrm{SiO}_{2}$, and CrCl_{3} or CrBr_{2}, respectively, in sealed silica tubes at elevated temperatures $\left(\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}: 1000^{\circ} \mathrm{C} ; \mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}\right.$: $1220^{\circ} \mathrm{C}$) in the presence of a mineralizer $\left(\mathrm{NH}_{4} \mathrm{Cl}\right.$; excess of CrBr_{2}). They show remarkable stability against oxidation. The crystal structures of both $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}\left(\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}\right)$ have been determined and refined from X-ray single crystal data (Pc No. 7), $Z=4, a=6.3853(7) \AA(6.414(3) \AA), b=12.707$ (2) $\AA(12.829(6) \AA), c=10.448(1) \AA(10.540(6) \AA), \beta=92.37(1)^{\circ}$ ($\left.91.61(4)^{\circ}\right)$). Four circle diffractometer data were used for the refinement of the chloride structure while imaging plate data were used for the bromide (conventional residual $R 1=0.016$ (0.053) for 4761 (3491) Fo $>4 \sigma$, 4945 (3911) independent reflections, 273 (273) parameters). The structure consists of eight crystallographically different Cr^{2+} with c.n. five or six and mixed coordination by oxygen and halogen. All coordination polyhedra are highly distorted as a result of the Jahn-Teller effect. Two independent disilicate groups exhibit almost eclipsed conformation with bridging angles ($\mathrm{Si}-\mathrm{O}-\mathrm{Si}$) of 145.8° and 138.4° for the chloride and 146.3° and 140.8° for the bromide. © 1996 Academic Press

INTRODUCTION

Until now there has been little information available on chromium(II) containing oxo-compounds, like phosphates, borates, silicates, or "salts" of other oxo-acids. The tendency of Cr^{2+} to disproportionate into Cr^{0} and Cr^{3+} is probably the reason for the small number of chromium(II)-oxo-compounds known so far. Among the few wellcharacterized compounds of divalent chromium coordinated only by oxygen or oxygen and halogen atoms are the boracites $\mathrm{Cr}_{3} \mathrm{~B}_{7} \mathrm{O}_{13} X(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})(1-3), \mathrm{CaCrSi}_{4} \mathrm{O}_{10}$ (4), the mixed-valent chromium(II, III)-phosphates $\mathrm{Cr}_{6}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{4}(5)$ and $\mathrm{Cr}_{7}\left(\mathrm{PO}_{4}\right)_{6}(6)$, and $\mathrm{Cr}_{2} \mathrm{SiO}_{4}$, the structure of which has been determined only recently (7). On the other hand, there is an interest in such compounds for the particular stereochemistry related to the d^{4} electronic configuration of divalent chromium and the resulting

Jahn-Teller effect. For investigations on magnetic properties, crystal chemistry, and correlation between color and coordination geometry around Cr^{2+} we tried to synthesize new compounds containing $\mathrm{Cr}(\mathrm{II})$.

First information on chromous halide-silicates dates back to the thirties, when Doerner observed a blue, silicatecontaining compound after reaction of CrCl_{2} with quartz glass at temperatures above $900^{\circ} \mathrm{C}$ (8), but did not report any further characterization. Fischer (9) found at the same time that at its melting temperature $\left(842^{\circ} \mathrm{C}\right) \mathrm{CrBr}_{2}$ does not react with quartz. In this paper we report on preparation and crystal structure of the first chromous halidedisilicates. Possibly, the deep-blue chloride-disilicate we describe here is the same Doerner had already observed.

EXPERIMENTAL

Single crystals of the chromous dichloride-disilicate were obtained following Eq. [1] by reacting stoichiometric mixtures of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ (Merck), Cr (Johnson Matthey Chemicals), SiO_{2} (Serva), and CrCl_{3} (Fluka) in evacuated silicaampoules with a small amount of $\mathrm{NH}_{4} \mathrm{Cl}$ added as mineralizer.

$$
\begin{equation*}
3 \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{Cr}+6 \mathrm{SiO}_{2}+2 \mathrm{CrCl}_{3} \rightarrow 3 \mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2} \tag{1}
\end{equation*}
$$

The ampoules were heated in a temperature gradient $T_{2} \approx 1000^{\circ} \mathrm{C}$ and $T_{1} \approx 900^{\circ} \mathrm{C}$, with the starting materials at the higher temperature. After ca. 5 days, deep blue transparent crystals had formed in the middle of the ampoules. No reversible chemical transport behaviour was observed. The crystals were attached to the walls of the ampoules and had to be scratched off mechanically since they slowly dissolve in $5 \% \mathrm{HF}$. There was also $\mathrm{Cr}_{2} \mathrm{O}_{3}$ attached to the crystals and especially at higher temperatures $\left(T_{2}>1000^{\circ} \mathrm{C}\right)$ the chloride-disilicate was partly molten and sometimes it had grown into the walls of the ampoule.

For the preparation of chromous dibromide-disilicate the calculated amounts of $\mathrm{SiO}_{2}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{Cr}$ and about 20% excess of CrBr_{2} were filled into thick-walled (3 mm) silica
ampoules and heated at a higher temperature $\left(1220^{\circ} \mathrm{C} ; 30\right.$ h) than those necessary for the chloride-disilicate.

$$
\begin{equation*}
\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{Cr}+2 \mathrm{SiO}_{2}+\mathrm{CrBr}_{2} \rightarrow \mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2} \tag{2}
\end{equation*}
$$

Besides a purple compound containing less bromide (presumably $\mathrm{Cr}_{2} \mathrm{SiO}_{4} \cdot 1 / 8 \mathrm{CrBr}_{2}$ (10)), a small amount of deep-blue crystals of $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$ had formed. No reaction of the starting materials has been found below $1200^{\circ} \mathrm{C}$ in agreement with the observations of Fischer (9). At temperatures above $1280^{\circ} \mathrm{C}$ heavy corrosion of the walls of the silica ampoules took place. Both halide-disilicates exhibit remarkable resistance against oxidation. They are stable in air and dilute nitric acid.

STRUCTURE REFINEMENT AND DESCRIPTION

Structure Refinement

Relevant experimental and crystallographic data for $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$ and $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$ are listed in Table 1. Systematic absences obtained from precession exposures indicate space groups $P 2 / c$ or $P c$. During the structure refinements $P c$ was confirmed. The noncentrosymmetric structures have been refined using SHELXL-93 (12). ${ }^{1}$ The origin has been fixed following the procedure given by Flack and Schwarzenbach (14). Allowance of racemic twinning was given in the refinements according to a method described by Flack and Bernardinelli $(15,16)$ (volume ratio of enantiomers: 21:79 (chloride); 74:26 (bromide)). Atomic parameters for $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$ and $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$ are given in Tables 2 and 3. Projections of the crystal structure (Fig. 1) as well as an inspection of the site parameters (Tables 2 and 3) suggest higher symmetry than $P c$ for $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$ and $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$. We therefore tried, despite the observed extinction conditions, to refine the structures in spacegroup $P 2_{1} / c$ assuming a center of symmetry at $(0.69,0.25,0.38)$ of the unit cell chosen in spacegroup Pc. These attempts led to split positions for some atoms $(\mathrm{Cr}(7)$ and $\mathrm{Cr}(8)$ in $P c)$ and for all other atoms to highly anisotropic displacement parameters with unreasonable high residuals $R 1$ and $\mathrm{w} R 2$. Structure refinement in spacegroup $P 2 / c$ turned out to be completely impossible.

X-ray Guinier powder-diagrams of the bulk samples are in good agreement with pattern calculated on the basis of structural parameters derived from the single crystal data.

When comparing the data of the chloride-disilicate obtained from an AED-2 four circle diffractometer with those for the bromide-disilicate from IPDS measurements the

[^0]better quality of the former is obvious with internal residuals R (int.) $=0.021$ and 0.034 for the chloride and the bromide, respectively. The better quality of the data set obtained for $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$ is reflected as well in the refinements by a better residual (R (on F 's) $=1.6 \%$ (chloride), 5.3% (bromide)), smaller principle mean square atomic displacement parameters and smaller standard deviations for all parameters.

Crystal Structure

The crystal structure of the chromous halide-disilicates $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) X_{2}(X=\mathrm{Cl}, \mathrm{Br})$ consists of halide ions and [$\mathrm{Si}_{2} \mathrm{O}_{7}$] groups forming strongly distorted coordination polyhedra around Cr^{2+} (Fig. 1). Bond lengths and angles are given in Tables 4 and 5. The unit cell contains eight crystallographically different Cr atoms. All show mixed coordination by oxygen and halogen atoms. Figure 1 visualizes that for a better topological understanding the structure might be divided into two types of slightly warped layers parallel to (1000), with one "chromium disilicate" layer and the other layer containing Cr^{2+} and halide. The halide ions form a hexagonal net within such a layer.

The coordination polyhedra around chromium in the "chromium disilicate" layer ($\mathrm{Cr} 1, \mathrm{Cr} 4, \mathrm{Cr} 5$, and Cr 6) have an almost square planar basis of four oxygen atoms. These squares share opposite edges, thus forming chains parallel to the crystallographic b-axis (Fig. 2a). The chains are connected to each other via disilicate groups. It is unusual that Cr 5 and Cr 6 are even coordinated by the bridging oxygen atoms O 11 and O 3 in $\mathrm{Si}_{2} \mathrm{O}_{7}$-groups. Only relatively long $\mathrm{Cr}-X$ bonds connect the "chromous-silicate" with the "chromous-halide" substructure (Fig. 1b and 2b), where $\mathrm{Cr} 2, \mathrm{Cr} 3, \mathrm{Cr} 7, \mathrm{Cr} 8$ are mainly coordinated to halogen atoms.

Coordination around Cr^{2+}

While $\mathrm{Cr} 5, \mathrm{Cr} 6$, and Cr 8 are coordinated by six ligands, forming strongly distorted octahedra, the other five Cr atoms (Cr1, Cr2, Cr3, Cr5, Cr7) have an environment of only five ligands. Cr6 has five oxygen and only one halogen atom as ligands. Four oxygen atoms with shorter bonds form a slightly bent square plane. Above and below the plane are the remaining ligands $X 1$ and O3 with longer bonds. Cr8 is surrounded by three oxygen and three halogen ions, with one halogen in-plane with the oxygen atoms leading to comparatively long bonds for the remaining halogens above and below the plane. The octahedron around Cr 5 formed by five oxygen atoms and one halogen is strongly distorted as a result of the very long bond to O4. In the bromide-disilicate this $d(\mathrm{Cr} 5-\mathrm{O} 4)$ is getting even longer ($2.926 \AA$). By further distortion of the octahedra around $\mathrm{Cr} 3, \mathrm{Cr} 2$, and Cr 7 one ligand is removed, leaving only five ligands forming crooked trigonal bipyra-

TABLE 1
Summary of Crystallographic Parameters and Details on Measurement, Structure Determination, and Refinement for $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$ and $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$

Empirical formula	$\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$	$\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$
Formula weight	447.1	536.0
Crystal size [mm^{3}]	ca. $0.15 \cdot 0.15 \cdot 0.15$	ca. $0.08 \cdot 0.10 \cdot 0.08$
Color	deep blue, transparent	deep blue, transparent
Crystal system	monoclinic	monoclinic
Space group	Pc (No. 7)	Pc(No. 7)
$a[\AA ̊]$	$6.3853(7)^{a}$	6.414(3) ${ }^{\text {b }}$
$b[\AA]$	12.707(2)	12.829(6)
$c[\AA]$	10.448(1)	10.540(6)
$\beta\left[{ }^{\circ}\right]$	92.37(1)	91.61(4)
Number of formula units Z	4	4
Volume of the unit cell [\AA^{3}]	847.0	866.9
$\rho_{\text {calc }}\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	3.506	4.107
Diffractometer	four-circle diffractometer AED-2, Fa. Siemens	IPDS imaging plate diffraction system, Fa. Stoe
T [${ }^{\circ} \mathrm{C}$]	room temperature	room temperature
$\lambda(\mathrm{MoK} \alpha)[\AA]$	0.71073	0.71073
Absorption correction	empirical correction involving φ-scans	numerical correction, optimized crystal shape with HABITUS (13)
$h k l-d a t a ~ l i m i t s ~$	$-8 \leq h \leq 8,-17 \leq k \leq 17,-14 \leq l \leq 14$	$-8 \leq h \leq 8,-16 \leq k \leq 16,-13 \leq l \leq 13$
Reflections (range)	$9682\left(3.2^{\circ} \leq 2 \theta \leq 60^{\circ}\right)$	6375 ($3^{\circ} \leq 2 \theta \leq 56.1^{\circ}$)
Structure determination	starting positions from $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$ refinement with SHELXL-93 (12)	starting position from Direct Methods by SHELXS-86 (11), refinement with SHELXL-93 (12)
R (int.)	0.021	0.034
Volume ratio of enantiomers	20.9(8) :79.1	74(2):26
Number of unique reflections	4945	3911
Number of observed reflections (I $>4 \sigma$ after data merging)	4761	2072
Number of parameters	273	273
Residual electron density e/ \AA^{3}	max.: 0.34 min: -0.44	max.: 2.34 min: -1.24
Goodness of fit	1.068	1.047
$R 1=\frac{\sum\left(\left\|F_{o}-F_{c}\right\|\right)}{\sum\left\|F_{o}\right\|}$	$R 1=0.016$	$R 1=0.053$
$\mathrm{w} R 2=\frac{\sum\left[\mathrm{w}\left(F_{o}^{2}-F_{c}^{2}\right)\right]}{\sum\left[\mathrm{w}\left(F_{o}^{2}\right)^{2}\right]^{1 / 2}}$	$\mathrm{w} R 2=0.042$	$\mathrm{w} 22=0.144$
Weighting scheme	WGHT: 0.02070 .1989	WGHT: 0.073621 .6248
$P=\frac{\max \left(F_{o}^{2}, 0\right)+2 \cdot F_{c}^{2}}{3}$	$W=\frac{1}{\sigma^{2} \cdot F_{o}^{2}+(0.0207 \cdot P)^{2}+0.20 \cdot P}$	$W=\frac{1}{\sigma^{2} \cdot F_{o}^{2}+(0.0736 \cdot P)^{2}+21.62 \cdot P}$
Correction for extinction ${ }^{c}$	$f_{\mathrm{Ex}}=0.0032(2)$	$f_{\text {Ex }}=0.0051(8)$
Scan mode	$\tilde{\omega}$-scan, learned profile	irradiation time: 26 min per image 183 images; $0 \leq \varphi \leq 182^{\circ}$

${ }^{a}$ From single-crystal measurement on the four-circle diffractometer.
${ }^{b}$ From single-crystal measurement on the IPDS.
${ }^{c}$ An extinction parameter $f_{\text {Ex }}$ is refined, where F_{c} is multiplied by $k\left[1+0.001 \cdot f_{\mathrm{Ex}} \cdot \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}($ SHELXL-93 (12)).
mides with the three oxygen atoms in a square plane with one corner missing and the two halogen atoms above and below the plane bending in at the missing corner of the plane. This seems to be the best arrangement for Cr coordinated by two halogen and three oxygen atoms. The remaining Cr 1 and Cr 4 have only one halogen ligand making the square pyramide with a plane of four oxygens the
favorable arrangement. Figure 3 shows the different coordination polyhedra as ORTEP-plot.

The mean distance of the short $\mathrm{Cr}-\mathrm{O}$ bonds in the square plane around $\mathrm{Cr}^{2+}\left(\right.$ for $\left.\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}\left(\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}\right)\right)$ is $2.057 \AA(2.068 \AA)$ (omitting Cr5-O4) while the mean long $\mathrm{Cr}-\mathrm{O}$ bond is $2.527 \AA(2.433 \AA)$ and the mean $\mathrm{Cr}-\mathrm{X}$ distance is $2.694 \AA(2.798 \AA)$. The individual distances can

TABLE 2
Atomic Positions and Isotropic Displacement Parameters of $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2} .(P c, Z=4, a=6.3853(7) \AA, b=12.707(2) \AA$, $\left.c=10.448(1) \AA, \beta=92.37(1)^{\circ}\right)$

Atom	x	y	z	$U_{\text {eq }}$
Cr1	0.18372(5)	0.12885(3)	0.39777(3)	0.01056(7)
Cr2	0.81107(5)	0.03351(3)	0.58642(4)	0.01558(7)
Cr3	0.81780(5)	0.72188(3)	0.57379(4)	0.01222(7)
Cr4	0.21783(5)	0.62713(2)	0.88628(3)	0.00966 (7)
Cr 5	0.20670(6)	0.36369(3)	0.88237(3)	0.01526(7)
Cr6	0.14896 (6)	0.88665(3)	0.40482(3)	0.01231(7)
Cr7	0.54722(6)	0.76748(3)	0.07801(4)	0.01240(7)
Cr8	$0.56264(5)$	0.54127(3)	0.68936(4)	0.01157(7)
Si1	0.06562(9)	0.50389(4)	$0.62846(5)$	0.0075(1)
Si2	0.05612(8)	0.74037(4)	0.14441(5)	0.0071(1)
Si3	0.32038(9)	0.99882(4)	$0.64375(5)$	0.0075(1)
Si4	0.32460(8)	0.75984(4)	0.63520(5)	0.0073(1)
O1	0.1208(2)	0.0203(1)	0.5388(1)	0.0095(3)
O2	0.2487(3)	0.0000(1)	0.7889(2)	0.0124(3)
O3	0.3862(3)	0.8805(1)	0.6020(2)	0.0118(3)
O4	0.2539(3)	0.5361(1)	0.7313(2)	0.0144(3)
O5	0.2524(3)	0.7553(1)	0.7798(2)	0.0120(3)
O6	0.5087(2)	0.0765(1)	0.6100(2)	0.0120(3)
O7	0.2234(2)	0.7468(1)	0.0283(1)	0.0091(3)
O8	-0.1371(2)	0.5761(1)	0.6474(2)	0.0117(3)
O9	0.1752(3)	0.7731(1)	0.2771(1)	0.0129(3)
O10	0.1290(2)	0.7360(1)	0.5308(1)	0.0113(3)
O11	0.0078(3)	0.3834(1)	0.6674(2)	0.0145(3)
O12	0.1540(3)	0.5056(1)	0.4855(2)	0.0130(3)
O13	-0.1495(2)	0.8079(1)	0.1083(2)	0.0124(3)
O14	0.5188(2)	0.6843(1)	0.6062(1)	0.0109(3)
Cl1	-0.2506(1)	0.87533(4)	0.43550(5)	0.0142(1)
C12	0.6290(1)	0.61432(5)	0.95391(6)	0.0220(1)
Cl3	0.5831(1)	0.37017(4)	0.79242(6)	0.0193(1)
C14	-0.1892(1)	0.11917(5)	0.26965(6)	0.0240(1)
$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} \cdot a_{i} * \cdot a_{j} * \cdot a_{i} \cdot a_{j}$				

Note. Standard deviations in parentheses.
be derived from Tables 5 and 6 . The bromide-disilicate shows very similar coordination polyhedra as the chloride compound, but Cr 5 is only coordinated by five ligands because oxygen O4 is too far off. The distances in the bromide-disilicate are longer in general as can be seen regarding the mean distances.

$\mathrm{Si}_{2} \mathrm{O}_{7}$-Groups

The second characteristic structural feature are two different disilicate groups formed by Si 1 and Si 2 with O 11 as the bridging oxygen, and Si 3 and Si 4 with the bridging O 3. The SiO_{4}-tetrahedra are almost ideal with four Si -O bonds of similar length (mean $\mathrm{Si}-\mathrm{O}$ distance: $1.621 \AA$). The $\mathrm{Si}-$ $\mathrm{O}-\mathrm{Si}$ angles are 145.8° and 138.4° for the chloride and 146.3° and 140.8° for the bromide, respectively, with the two SiO_{4}-tetrahedra in eclipsed configuration (Fig. 4).

DISCUSSION

Up to now only a limited number of compounds containing Cr^{2+} in an environment of oxygen or halogen atoms has been known. Table 7 gives a summary. Generally, these compounds exhibit a $4+2$ coordination for Cr^{2+} (4 shorter bonds to ligands in a square planar arrangement and two longer bonds to ligands above and below the plane). Due to the Jahn-Teller effect a stabilization of the d^{4} electron configuration of Cr^{2+} is achieved in such ligand fields of symmetry lower than O_{h}. The variety of coordination polyhedra observed for Cr^{2+} in the disilicate-dihalides gives striking evidence for this stereochemical effect. Comparison of the mixed ligand environments around Cr^{2+} shows that there seems to be a tendency to form four short (strong) bonds to oxygen in a square-planar arrangement,

TABLE 3
Atomic Positions and Isotropic Displacement Parameters of $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$. (Pc, $Z=4, a=6.414(3) \AA, b=12.829(6) \AA$, $\left.c=10.540(6) \AA, \beta=91.61(4)^{\circ}\right)$

Atom	x	y	z	$U_{\text {eq }}$
Cr1	0.1947(4)	0.1288(2)	0.4017(2)	0.0147(4)
Cr 2	0.8147(4)	0.0380(2)	0.5876(3)	0.0196(5)
Cr 3	0.8203(3)	0.7212(2)	0.5776(2)	0.0171(4)
Cr4	0.2168(3)	0.6285(2)	0.8852(2)	0.0144(4)
Cr 5	0.1845(4)	0.3619(2)	0.8821(2)	0.0190(5)
Cr6	0.1583(4)	0.8870(2)	0.4080(2)	0.0173(5)
Cr7	0.5479(3)	0.7695(2)	0.0806(2)	0.0160(4)
Cr8	0.5587(4)	0.5448(2)	0.6831(2)	0.0167(4)
Si1	0.0667(6)	0.5054(3)	0.6268(3)	0.0137(7)
Si2	0.0587(5)	0.7398(3)	0.1462(3)	0.0130(7)
Si3	0.3216 (6)	0.9992(3)	0.6459(3)	0.0122(7)
Si4	0.3252(6)	0.7610(3)	0.6377(3)	0.0127(7)
O1	0.127(1)	0.0234(7)	0.5441 (9)	0.014(2)
O2	0.254(2)	0.0005(8)	0.791(1)	0.021(2)
O3	0.378(2)	0.8814(7)	0.6031(9)	0.015(2)
O4	0.250(2)	0.5459(7)	0.7240(9)	0.016(2)
O5	0.254(2)	0.7561(7)	0.7805(9)	0.018(2)
O6	0.509(1)	0.0741(7)	0.6117(9)	0.016(2)
O7	0.228(2)	0.7273(7)	0.0315(9)	0.014(2)
O8	-0.139(1)	0.5743(7)	0.6439(9)	0.015(2)
O9	0.169(2)	0.7743(7)	0.2789(9)	0.016(2)
O10	0.130(1)	0.7351(7)	0.5365(9)	0.016(2)
O11	0.024(2)	0.3845(7)	0.675(1)	0.018(2)
O12	0.150(2)	0.5040(7)	0.4839(9)	0.015(2)
O13	-0.147(1)	0.8042(7)	0.1103(9)	0.017(2)
O14	0.521(1)	0.6885(7)	0.6057(9)	0.017(2)
Br 1	-0.2590(2)	0.8785(1)	0.4286(1)	0.0181(3)
Br 2	0.6486(2)	0.6127(1)	-0.0527(1)	0.0234(3)
Br3	0.5821(2)	0.3675(1)	0.7952(1)	0.0198(3)
Br4	-0.2003(2)	0.1246(1)	0.2789(2)	0.0238(3)
$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} \cdot a_{i} * \cdot a_{j} * \cdot a_{i} \cdot a_{j}$				

Note. Standard deviations in parentheses.

TABLE 4
Interatomic Distances [\AA] and Angles $\left({ }^{\circ}\right)$ for $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$

Cr1	O5	O2	O1	O7	Cl 4		Cr7	013	O6	07	Cl 2	Cl 3	
O5	1.981	3.111	4.043	2.613	3.238		013	2.015	2.632	4.130	3.234	3.465	
O2	101.15	2.046	2.781	4.083	3.179		O6	81.22	2.028	2.994	4.334	4.209	
O1	173.10	84.99	2.070	3.034	3.598		07	170.96	92.16	2.127	3.211	3.818	
O7	79.69	160.62	93.47	2.096	4.069		Cl 2	93.56	155.48	89.95	2.407	3.565	
Cl4	86.47	83.24	97.48	116.08	2.686		Cl 3	89.28	118.57	99.33	85.09	2.844	
Cr 2	O6	013	O1	Cl1	Cl 4		Cr8	014	O8	O4	C13	Cl 2	Cl 2
O6	2.031	2.632	4.072	3.528	3.524		O14	2.029	2.613	2.881	4.453	3.779	4.185
O 13	80.48	2.043	2.894	4.448	4.311		O8	80.05	2.033	4.054	3.544	3.623	3.452
O1	167.21	89.55	2.066	3.158	3.643		O4	90.20	169.27	2.038	3.027	3.417	4.285
Cl1	99.31	148.61	85.01	2.575	3.498		Cl 3	175.07	104.87	84.87	2.427	3.538	3.565
C14	94.47	128.86	98.03	82.53	2.726		Cl 2	97.61	91.93	84.88	82.08	2.931	5.978
							Cl 2	104.17	79.20	107.79	77.34	154.54	3.197
Cr 3	O 14	O8	O10	Cl1	Cl4								
O14	2.010	2.613	4.061	3.385	3.517		Sil	O8	O 12	O11	O4		
O8	80.78	2.022	2.945	4.444	4.095		O8	1.606	2.716	2.628	2.661		
010	170.86	92.24	2.063	3.131	3.764		O 12	114.82	1.618	2.653	2.649		
C11	98.08	166.07	87.26	2.455	3.498		O11	108.30	109.50	1.630	2.567		
C14	90.24	112.26	97.90	81.57	2.877		O4	110.57	109.22	103.85	1.631		
Cr 4	O5	O4	O12	O7	C12		Si2	O13	O9	011	O7		
O5	1.990	2.831	4.015	2.613	3.456		O13	1.601	2.702	2.692	2.671		
O4	90.09	2.011	2.807	4.109	3.417		O9	114.75	1.608	2.512	2.651		
012	174.20	88.02	2.030	3.257	3.422		011	113.29	102.08	1.623	2.628		
07	78.80	167.24	103.64	2.124	3.211		O7	110.46	108.87	106.82	1.651		
C12	93.84	91.95	91.71	82.64	2.695								
							Si3	O2	O6	O3	O1		
Cr 5	O12	O9	O10	Cl 3	O11	O4	O2	1.602	2.730	2.652	2.717		
012	2.016	4.042	2.971	3.812	3.695	2.807	O6	116.62	1.606	2.611	2.654		
O9	164.75	2.062	2.720	3.177	2.512	3.992	O3	110.47	107.76	1.626	2.525		
010	93.05	82.13	2.078	4.126	4.132	4.752	O1	112.33	108.26	100.04	1.669		
Cl3	110.00	84.60	122.55	2.618	3.851	3.027							
O11	107.60	65.07	126.33	96.43	2.546	2.567	Si4	O5	O14	O3	O10		
O4	70.85	112.31	163.34	69.00	58.19	2.724	O5	1.598	2.693	2.615	2.698		
							014	114.33	1.607	2.631	2.662		
Cr6	09	O 2	O1	O 10	O3	Cl1	O3	108.53	109.13	1.623	2.553		
O9	1.977	2.923	4.189	2.720	3.850	3.491	O 10	112.20	109.50	102.44	1.652		
O 2	94.51	2.003	2.781	4.288	3.680	3.927							
O1	176.74	82.35	2.213	3.615	2.525	3.158		$\begin{aligned} & \varphi(\mathrm{Si} 1-\mathrm{O} 11-\mathrm{Si} 2) \\ & \varphi(\mathrm{Si} 3-\mathrm{O} 3-\mathrm{Si} 4) \end{aligned}$		145.79			
010	77.86	163.49	105.40	2.330	2.553	3.131				138.44			
O3	117.80	108.85	64.32	63.60	2.508	4.357							
Cl 1	98.88	117.04	81.84	78.88	117.49	2.588							

Note. Highest estimated standard deviations (SHELXL-93): distances Cr-O: $0.002 \AA, \mathrm{Cr}-\mathrm{Cl}: 0.001 \AA, \mathrm{Si}-\mathrm{O}: 0.002 \AA$, angles $\mathrm{O}-\mathrm{O}: 0.11^{\circ}$, $\mathrm{O}-\mathrm{Cl}: 0.06^{\circ}, \mathrm{O}-\mathrm{Si}-\mathrm{O}: 0.13^{\circ}$.

TABLE 5
Interatomic Distances $[\AA]$ and Angles $\left({ }^{\circ}\right)$ for $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$

Cr1	O5	O2	O1	O7	Br4
O5	1.995	3.138	4.064	2.657	3.289
O2	101.11	$\mathbf{2 . 0 6 8}$	2.826	4.125	3.327
O1	172.90	85.99	$\mathbf{2 . 0 7 6}$	3.018	3.683
O7	80.74	162.65	92.39	$\mathbf{2 . 1 0 5}$	4.115
Br4	84.51	84.50	96.62	112.84	$\mathbf{2 . 8 1 2}$
Cr2	O6	O13	O1	Br1	Br4
O6	$\mathbf{2 . 0 3 7}$	2.703	4.096	3.520	3.590
O13	82.76	$\mathbf{2 . 0 5 2}$	2.920	4.547	4.494
O1	170.41	90.10	$\mathbf{2 . 0 7 4}$	3.300	3.796
Br1	95.62	147.66	86.97	$\mathbf{2 . 6 7 8}$	3.701
Br4	91.49	129.31	98.00	82.94	$\mathbf{2 . 9 0 4}$
Cr3	O14	O8	O10	Br1	Br4
O14	1.995	2.647	4.036	3.401	3.478
O8	82.36	$\mathbf{2 . 0 2 5}$	2.937	4.569	4.140
O10	172.03	92.20	$\mathbf{2 . 0 5 2}$	3.277	3.815
Br1	94.62	162.29	88.80	$\mathbf{2 . 5 9 9}$	3.701
Br4	88.37	112.95	99.14	84.29	$\mathbf{2 . 9 0 6}$
Cr4	O5	O4	O12	O7	Br2
O5	$\mathbf{1 . 9 9 2}$	2.762	4.032	2.657	3.556
O4	87.04	$\mathbf{2 . 0 1 8}$	2.902	4.150	3.533
O12	174.18	91.19	$\mathbf{2 . 0 4 5}$	3.299	3.564
O7	79.26	164.90	103.06	$\mathbf{2 . 1 6 8}$	3.342
Br2	93.23	91.85	92.37	82.68	$\mathbf{2 . 8 3 5}$

Cr 7	013	Br2	O6	O7	Br3	
O13	2.023	3.253	2.703	4.134	3.444	
Br 2	90.00	2.548	4.477	3.342	3.712	
O6	83.17	153.57	2.049	3.021	4.251	
07	172.92	91.00	92.87	2.119	3.832	
Br 3	87.73	86.32	118.72	99.32	2.868	
Cr8	O14	O8	O4	Br3	Br 2	Br 2
O14	2.028	2.647	2.838	4.589	3.796	4.296
O8	81.46	2.028	4.049	3.597	3.544	3.426
O4	88.48	168.82	2.040	3.203	3.533	4.428
Br 3	174.96	102.45	87.34	2.565	3.551	3.712
Br 2	97.39	88.54	87.93	79.66	2.959	6.011
Br2	106.12	76.72	111.02	78.05	149.79	3.266

Si1	O8	O12	O4	O11
O8	$\mathbf{1 . 6 0 4}$	2.696	2.636	2.668
O12	113.98	$\mathbf{1 . 6 1 1}$	2.648	2.671
O4	109.62	$\mathbf{1 0 9 . 9 8}$	$\mathbf{1 . 6 2 2}$	2.570
O11	109.85	$\mathbf{1 0 9 . 6 4}$	$\mathbf{1 0 3 . 2 3}$	$\mathbf{1 . 6 5 6}$

Si2	O13	O9	O11	O7
O13	$\mathbf{1 . 5 9 3}$	2.684	2.736	2.670
O9	113.75	$\mathbf{1 . 6 1 1}$	2.481	2.669
O11	115.75	99.56	$\mathbf{1 . 6 3 8}$	2.638
O7	110.73	109.73	106.60	$\mathbf{1 . 6 5 2}$

Si 3	O6	O2	O3	O1
O6	$\mathbf{1 . 5 8 9}$	2.706	2.612	2.617
O2	115.86	$\mathbf{1 . 6 0 4}$	2.643	2.725
O3	108.96	110.15	$\mathbf{1 . 6 2 0}$	2.498
O1	107.60	113.52	99.45	$\mathbf{1 . 6 5 4}$

Si4	O5	O14	O3	O10
O5	$\mathbf{1 . 5 8 7}$	2.696	2.608	2.684
O14	115.14	$\mathbf{1 . 6 0 7}$	2.641	2.662
O3	108.53	109.57	$\mathbf{1 . 6 2 5}$	2.546
O10	111.66	109.34	101.75	$\mathbf{1 . 6 5 6}$

$\varphi(\mathrm{Sil-O} 11-\mathrm{Si} 2)$	146.25
$\varphi(\mathrm{Si3}-\mathrm{O} 3-\mathrm{Si} 4)$	140.78

Cr5	O12	O9	O10	Br3	O11	O4
O12	$\mathbf{2 . 0 4 4}$	4.090	3.020	3.831	3.629	2.902
O9	170.92	$\mathbf{2 . 0 5 9}$	2.780	3.216	2.481	4.183
O10	93.96	84.20	$\mathbf{2 . 0 8 7}$	4.127	4.148	4.958
Br3	105.70	82.97	117.11	$\mathbf{2 . 7 3 5}$	3.768	3.203
O11	109.01	66.99	134.73	94.06	$\mathbf{2 . 4 0 6}$	2.570
O4	68.86	112.93	162.78	68.82	56.63	$\mathbf{2 . 9 2 6}$
Cr6	O9	O2	Br1	O1	O10	O3
O9	$\mathbf{1 . 9 8 8}$	2.942	3.471	4.259	2.780	3.886
O2	94.99	$\mathbf{2 . 0 0 4}$	3.951	2.826	4.351	3.684
Br1	94.51	113.71	$\mathbf{2 . 6 9 4}$	3.300	3.277	4.432
O1	175.05	82.40	82.76	$\mathbf{2 . 2 7 5}$	3.699	2.498
O10	78.40	165.30	80.15	105.09	$\mathbf{2 . 3 8 3}$	2.546
O3	121.42	110.80	118.55	63.52	63.39	$\mathbf{2 . 4 6 0}$

Note. Highest estimated standard deviations (SHELXL-93): distances $\mathrm{Cr}-\mathrm{O}: 0.011 \AA, \mathrm{Cr}-\mathrm{Br}: 0.003 \AA, \mathrm{Si}-\mathrm{O}: 0.011 \AA$, angles $\mathrm{O}-\mathrm{O}$: 0.56°, $\mathrm{O}-\mathrm{Br}: 0.32^{\circ}, \mathrm{O}-\mathrm{Si}-\mathrm{O}: 0.72^{\circ}$.

FIG. 1. ATOMS-plots (18) of $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$. Small circles represent Cr^{2+} (group 1 ($\mathrm{Cr} 1, \mathrm{Cr} 4, \mathrm{Cr} 5, \mathrm{Cr} 6$) light gray, group $2(\mathrm{Cr} 2, \mathrm{Cr} 3, \mathrm{Cr} 7$, Cr 8) dark gray), large circles represent chloride. $\mathrm{The}^{2} \mathrm{Si}_{2} \mathrm{O}_{7}$-groups are shown as polyhedra. (a) Projection along the a-axis with slightly warped hexagonal nets parallel to (100) formed by chloride. (b) Projection along c emphasizing the "chromous-disilicate" and the "chromous-dichloride" substructure. While the chromium ions coordinated mainly by oxygen are sited in a layer between the disilicate groups, the Cr^{2+} coordinated by more halogen are in a row with the halogen atoms.
while halide ions prefer axial ligand positions with longer (weaker) bonds.

This generalization leads to interesting aspects in the discussion of the structure. Due to the difference in size of $\mathrm{O}^{2-}, \mathrm{Cl}^{-}$, and Br^{-}, assignment of coordination numbers to Cr^{2+} becomes rather arbitrary on the basis of simple bond distances. For the five Cr atoms coordinated by only five ligands, for example, another oxygen or halogen atom is found within the range of $3.0-3.8 \AA$.

In order to rationalize the suggested structure model and to compare observed interatomic distances with those

FIG. 2. ATOMS-plots (18) of $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$ visualizing the connectivity of the $\left[\mathrm{CrO}_{x} \mathrm{Cl}_{y}\right]$ polyhedra. Projection along a. (a) Coordination polyhedra around Cr ions of group 1. (b) Coordination polyhedra around Cr ions of group 2. Open circles at the vertices of the polyhedra indicate oxygen, filled circles represent chlorine.

FIG. 3. ORTEP-plots (17) of the coordination polyhedra around Cr^{2+} ions in $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$. Ellipsoids with 88% probability are displayed.

TABLE 6
Connectivity Matrix, Partial Bond-Valences $\boldsymbol{\nu}_{i}$ According to (19) and ECoN (21) for $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$

	01	O 2	03	04	05	06	07	O8	09	010	011	012	013	014	ClI	C 12	Cl 3	C14	Σv_{i}	ECoN	C.N.
Cr 1	0.399	0.426			0.507		0.372											0.200	1.904	4.659	5
Cr2	0.403					0.443							0.429		0.270			0.179	1.724	4.612	5
Cr 3								0.454		0.407				0.469	0.373			0.119	1.824	4.325	5
$\overline{\mathrm{Cr} 4}$				0.468	0.495		0.345					0.444				0.195			1.950	4.592	5
Cr 5				0.068					0.408	0.390	0.110	0.462					0.240		1.678	4.138	6
Cr6	0.271	0.478	0.122						0.513	0.198					0.260				1.842	4.690	6
$\overline{\mathrm{Cr} 7}$						0.447	0.342						0.463			0.425	0.130		1.807	4.368	5
$\overline{\mathrm{Cr} 8}$				0.435				0.441						0.446		$\begin{array}{\|l\|} \hline 0.103 \\ 0.050 \\ \hline \end{array}$	0.402		1.877	4.292	6
Si1				0.981				1.050			0.984	1.016							4.031	3.995	4
Si2							0.930		1.044		1.003		1.064						4.041	3.982	4
Si3	0.885	1.061	0.995			1.050													3.991	3.966	4
$\underline{\mathrm{Si} 4}$			1.003		1.073					0.927				1.047					4.050	3.979	4
$\overline{\Sigma V}$	1.961	1.961	2.112	1.951	2.072	1.940	1.989	1.942	1.964	1.921	2.091	1.929	1.957	1.960	0.903	0.770	0.772	0.500			
ECON	3.899	2.992	2.248	3.019	2.996	3.000	3.987	2.999	2.970	3.683	2.187	2.998	2.996	2.999	2.943	2.527	2.601	3.043			
C.N.	4	3	3	3	3	3	4	3	3	4	3	3	3	3	3	4	3	3			

of already known crystal structures containing Cr^{2+}, we applied bond-length bond-strength considerations $(19,20)$ as well as the ECoN concept developed by Hoppe (21).

According to Brese and O'Keeffe (19) the valence $\nu_{i j}$ associated with a given distance $d_{i j}$ between atoms i and j is expressed by Eq. [3]. All individual valences $\nu_{i j}$ for atom i and the ligands j add up to the total valence V_{i} of an atom i (Eq. [4]).

FIG. 4. ORTEP-plots (17) of the disilicate groups in $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$. Ellipsoids with 88% probability are displayed.

$$
\begin{align*}
\nu_{i j} & =e^{\left(R_{i j}-d_{i j}\right) / b} \tag{3}\\
\sum \nu_{i j} & =V_{i} \tag{4}
\end{align*}
$$

$R_{i j}$, the bond-distance (in \AA) corresponding to unit valence, is listed for many combinations of cations and anions in (19) ($R_{\mathrm{Cr}(\mathrm{II})-\mathrm{O}}=1.73, R_{\mathrm{Cr}(\mathrm{II})-\mathrm{Cl}}=2.09, R_{\mathrm{Cr}(\mathrm{II})-\mathrm{Br}}$ $\left.=2.26, R_{\mathrm{Si}(\mathrm{IV})-\mathrm{O}}=1.624\right) . b$ is an empirically found constant of the value $0.37 \AA$. With Eq. [3] and the appropriate $R_{i j}$ we estimated the contribution of the individual bonds to the total valence of the different atoms in $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$ and $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$. The results are given for the chloridedisilicate in Table 6 . Those for the bromide-disilicate are very similar and are therefore omitted. The total valences found for Si^{4+} are very close to $4 . V_{i}$ found for Cr^{2+} are significantly lower $\left(1.68 \leq V_{i}(\mathrm{Cr}) \leq 1.95\right)$ than the expected value of 2 and show great variation. For most oxygen atoms $V_{i}=1.95 \pm 0.03$ is found, with the exception of O 5 and the bridging oxygen atoms of the disilicate groups (O3, O11) having $V_{i}=2.10 \pm 0.01$. While the "hyper-valence" of O 3 and O 11 is in agreement with values found in other disilicates, the rather high V_{i} for O 5 is not understandable from structural reasons. Even worse is the agreement between observed and expected valences for the halide ions: $0.90(\mathrm{Cl} 1), 0.77(\mathrm{Cl} 2), 0.77(\mathrm{Cl} 3), 0.50(\mathrm{Cl} 4)$. Therefore, we applied the ECoN (effective coordination

TABLE 7
Coordination Geometry around Cr^{2+}, MAPLE (22) and MAPLE ("CrO") Values for oxo-Compounds, oxo-Halides and Halides of Divalent Chromium

Compound/color	Coordination geometry	MAPLE (kcal/mol) compound	MAPLE (kcal/mol) "CrO" ${ }^{a}$	Reference
$\begin{gathered} \mathrm{Cr}_{2}^{2+} \mathrm{Cr}_{4}^{3+}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{4} \\ \text { yellowish-green } \end{gathered}$	$\begin{array}{ll} d(\mathrm{Cr}-\mathrm{O}(\text { short })): & 1.96,2.02,2.05 \\ d(\mathrm{Cr}-\mathrm{O}(\text { long })): & 2.15 \AA \\ & 2.60,2.64 \AA \end{array}$	53149.8	1129.1	(5)
$\begin{aligned} & \mathrm{Cr}_{3}^{2+} \mathrm{Cr}_{4}^{3+}\left(\mathrm{PO}_{4}\right)_{6} \\ & \quad \text { brown-transparent } \end{aligned}$	$\begin{array}{ll} d(\operatorname{Cr}(2)-\mathrm{O}):^{b} & 2.02(2 \mathrm{x}), 2.26 \\ & (2 \mathrm{x}), 2.33(2 \mathrm{x}) \AA \\ d(\mathrm{Cr}(4)-\mathrm{O}):^{b} & 2.03,2.05,2.05, \\ & 2.16,2.21 \AA \end{array}$	43668.9	1129.9	(6)
$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{SiO}_{4} \\ & \text { magenta } \end{aligned}$	$\begin{array}{ll} d(\mathrm{Cr}-\mathrm{O}(\text { short })): & 2.05 \AA(4 \mathrm{x}) \\ d(\mathrm{Cr}-\mathrm{O}(\text { long })): & 2.72 \AA(2 \mathrm{x}) \end{array}$	5711.7	1046.5	(7)
$\begin{aligned} & \mathrm{CaCrSi}_{4} \mathrm{O}_{10} \\ & \text { red } \end{aligned}$	$d(\mathrm{Cr}-\mathrm{O}): \quad 2.00 \AA(4 \mathrm{x})$	16688.0	1095.8	(4)
$\begin{gathered} \mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2} \\ \text { deep-blue } \end{gathered}$	$\begin{array}{ll}\text { mean } d(\mathrm{Cr}-\mathrm{O}(\text { short })): & 2.047 \AA \\ \text { mean } d(\mathrm{Cr}-\mathrm{O}(\text { long })): & 2.381 \AA \\ \text { mean } d(\mathrm{Cr}-\mathrm{Cl}) \text { : } & 2.798 \AA\end{array}$	11111.2	1078.9	this work
$\begin{gathered} \mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2} \\ \text { deep-blue } \end{gathered}$	mean $d(\mathrm{Cr}-\mathrm{O}($ short $)):$ $2.039 \AA$ mean $d(\mathrm{Cr}-\mathrm{O}($ long $)):$ $2.464 \AA$ mean $d(\mathrm{Cr}-\mathrm{Cl}):$ $2.694 \AA$	11129.1	1060.9	this work
$\begin{array}{r} \mathrm{Cr}_{3} \mathrm{~B}_{7} \mathrm{O}_{13} \mathrm{Cl} \\ \text { turquoise } \end{array}$	$\begin{array}{ll} d(\mathrm{Cr}-\mathrm{O}): & 2.05 \AA(4 \mathrm{x}) \\ d(\mathrm{Cr}-\mathrm{Cl}): & 3.03 \AA(2 \mathrm{x}) \end{array}$	21364.7	1036.1	(2)
$\begin{aligned} & \mathrm{Cr}_{3} \mathrm{~B}_{7} \mathrm{O}_{13} \mathrm{Br} \\ & \text { blue-turquoise } \end{aligned}$	$\begin{array}{ll} d(\mathrm{Cr}-\mathrm{O}): & 2.06 \AA(4 \mathrm{x}) \\ d(\mathrm{Cr}-\mathrm{Br}): & 3.04 \AA(2 \mathrm{x}) \end{array}$	21319.1	1032.2	(3)
$\begin{aligned} & \mathrm{Cr}_{3} \mathrm{~B}_{7} \mathrm{O}_{13} \mathrm{I} \\ & \text { green-turquoise } \end{aligned}$	$d(\mathrm{Cr}-\mathrm{O}):$ $d(\mathrm{Cr}-\mathrm{I}):$ $d .08 \AA(4 \mathrm{x})$ 	21242.2	1010.3	(1)
$\begin{gathered} \mathrm{CrCl}_{2} \\ \text { grayish } \end{gathered}$	$\begin{array}{ll} d(\mathrm{Cr}-\mathrm{Cl}): & 2.39 \AA(4 \mathrm{x}) \\ d(\mathrm{Cr}-\mathrm{Cl}): & 2.91 \AA(2 \mathrm{x}) \end{array}$	625.9	-	(24)
$\begin{aligned} & \mathrm{CrBr}_{2} \\ & \text { grayish } \end{aligned}$	$\begin{array}{ll} d(\mathrm{Cr}-\mathrm{Br}): & 2.55 \AA(4 \mathrm{x}) \\ d(\mathrm{Cr}-\mathrm{Br}): & 3.00 \AA(2 \mathrm{x}) \end{array}$	554.1	-	(25)
$\begin{aligned} & \mathrm{CrI}_{2} \\ & \text { brown } \end{aligned}$	$d(\mathrm{Cr}-\mathrm{I}):$ $2.74 \AA(4 \mathrm{x})$ $d(\mathrm{Cr}-\mathrm{I}):$ $3.23 \AA(2 \mathrm{x})$	510.20		(25)
$\begin{aligned} & \mathrm{CrCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\ & \text { blue } \end{aligned}$	$\begin{array}{ll} d(\mathrm{Cr}-\mathrm{O}): & 2.08 \AA(4 \mathrm{x}) \\ d(\mathrm{Cr}-\mathrm{Cl}): & 2.76 \AA(2 \mathrm{x}) \end{array}$	-	-	(26)

${ }^{a}$ The MAPLE (22) increment for the "CrO" have been determined from the MAPLE value of the respective compound minus the oxides contained besides " CrO ." The value for $\mathrm{B}_{2} \mathrm{O}_{3}$ in the $\mathrm{B}_{7} \mathrm{O}_{13}$-group was determined from $\mathrm{Mg}_{3} \mathrm{~B}_{7} \mathrm{O}_{13}$ (27), the value for SiO_{2} of the $\mathrm{Si}_{4} \mathrm{O}_{10}$-group was determined from $\mathrm{CaCuSi}_{4} \mathrm{O}_{10}$ (28), SiO_{2} in $\mathrm{Si}_{2} \mathrm{O}_{7}$ from $\mathrm{BaVSi}_{2} \mathrm{O}_{7}$ (29), $\mathrm{P}_{2} \mathrm{O}_{5}$ in $\mathrm{P}_{2} \mathrm{O}_{7}$ from $\mathrm{Na}_{2} \mathrm{P}_{2} \mathrm{O}_{7}(5), \mathrm{P}_{2} \mathrm{O}_{5}$ in PO_{4} average from several orthophosphates ($10650 \mathrm{kcal} / \mathrm{mol}$), SiO_{2} in SiO_{4} from $\mathrm{MgCaSiO}_{4}$ (27). Oxides from (27).
${ }^{b}$ Numbers of the different Cr^{2+} refer to the numbers given in Ref. (6).
numbers) concept, introduced by Hoppe (21). For comparison, ECoN as well as c.n. from bond-length bond-strength considerations are also included in Table 6 for all atoms. Again, for Si coordinations close to the ideal value of 4 are found, while for all other atoms more or less pronounced deviations from ideal coordination numbers result. This leads us to the conclusion that both concepts are unable to reproduce the particular bonding situation in compounds like $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{2}$ and $\mathrm{Cr}_{4}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Br}_{2}$, where a wide range of interatomic distances is observed within one coordination polyhedron due to different ligand types and the Jahn-Teller-effect.

Table 7 gives the MAdelung Parts of Lattice Energy (MAPLE (22)) of a number of compounds containing Cr^{2+}.

Even though the coordination geometry around Cr^{2+} varies remarkably for the different oxo- and oxo-halide-compounds, the increment MAPLE("CrO") derived from the data shows much less variation. The values are in the range $1010-1130 \mathrm{kcal} / \mathrm{mol}$ confirming similar bonding behavior of Cr^{2+} in all compounds.
The halide-disilicates have a deep-blue color, while most other chromous compounds mentioned in Table 7, like $\mathrm{Cr}_{3}\left(\mathrm{~B}_{7} \mathrm{O}_{13}\right) X(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})(1-3)$ and the diphosphate $\mathrm{Cr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (23), show less intensive blueish colors. This observation is in accordance with the highly distorted coordination polyhedra around Cr^{2+} lacking a center of symmetry. In contrast to this $\mathrm{CaCrSi}_{4} \mathrm{O}_{10}$ (4) is red with a square planar coordination of the Cr^{2+} ions.

ACKNOWLEDGMENTS

We thank G. Koch for the collection of the X-ray data and W. Herrendorf for the HABITUS calculations.

REFERENCES

1. A. Monnier, G. Berset, H. Schmid, and K. Yvon, Acta Crystallogr. C 43, 1243 (1987).
2. R. J. Nelmes and F. R. Thornley, J. Phys. C 7, 3855 (1974).
3. M. Yoshida, K. Yvon, and F. Kubel, Acta Crystallogr. B 48, 30 (1992).
4. H. L. Belsky, G. R. Rossman, C. T. Prewitt, and T. Gasparik, Am. Mineral. 69, 771 (1984).
5. R. Glaum, Z. Anorg. Allg. Chem. 616, 46 (1992).
6. R. Glaum, Z. Kristallogr. 205, 69 (1993).
7. W. A. Dollase, F. Seiffert, and H. St. C. O'Neill, Phys. Chem. Mineral. 21, 104 (1994).
8. H. A. Doerner, Tech. Paper Bureau Mines No. 577 1/51, 15 (1937); cited in Gmelin, Handbook $\operatorname{Cr}(\mathrm{B})$, p. 197.
9. W. Fischer, Z. Anorg. Allg. Chem. 222, 303 (1935).
10. A. Schmidt and R. Glaum, unpublished results.
11. G. M. Sheldrick, "SHELXS-86, Program for Crystal Structure Solution." Univ. Göttingen, 1986.
12. G. M. Sheldrick, "SHELXL-93, Program for Crystal Structure Refinement." Univ. Göttingen, 1993.
13. W. Herrendorf, "HABITUS, Programm zur Optimierung der Kristallgestalt fur die numerische Absorptionskorrektur anhand geeigneter φ-abgetasteter Reflexe." Dissertation, Univ. Karlsruhe, 1993.
14. H. D. Flack, D. Schwarzenbach, Acta Cryst. A 44, 499 (1988).
15. H. D. Flack, Acta Cryst. A 39, 876 (1983).
16. G. Bernardinelli and H. D. Flack, Acta Cryst. A 41, 500 (1985).
17. C. K. Johnson, "ORTEP-II," Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, 1976.
18. E. Dowty, "ATOMS for Windows," Vers. 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663.
19. N. E. Brese and M. O'Keeffe, Acta Crystallogr. B 47, 192 (1991).
20. I. D. Brown and R. D. Shannon, Acta Cryst. A 29, 266 (1973).
21. R. Hoppe, Z. Kristallogr. 150, 23 (1979).
22. R. Hoppe, Angew. Chem. Int. Ed. Engl. 5, 95 (1966).
23. R. Glaum, D. Özalp, M. Walter-Peter, and R. Gruehn, Z. Anorg. Allg. Chem. 601, 145 (1991).
24. J. W. Tracy et al., Acta Crystallogr. 14, 927 (1961).
25. J. W. Tracy, N. W. Gregory, and E. C. Ligafelter, Acta Crystallogr. 15, 672, 460 (1962).
26. H. G. von Schnering and B.-H. Brand, Z. Anorg. Allg. Chem. 402, 159 (1973).
27. R. W. G. Wyckoff, "Crystal Structures," 2nd ed., Vol. 1. Interscience, New York, 1965.
28. A. Pabst, Acta Crystallogr. 12, 733 (1959).
29. G. Liu and J. E. Greedan, J. Solid State Chem. 108, 267 (1993).

[^0]: ${ }^{1}$ Supplementary material on the structure investigations has been deposited (References: CSD-405842 (chloride), CSD-405843 (bromide)) and can be obtained through FACHINFORMATIONSZENTRUM KARLSRUHE, D-76344 Eggenstein-Leopoldshafen, Germany.

